375 research outputs found

    Design of a reconfigurable modular manipulator system

    Get PDF
    Using manipulators with a fixed configuration for specific tasks is appropriate when the task requirements are known beforehand. However, in less predictable situations, such as an outdoor construction site or aboard a space station, a manipulator system requires a wide range of capabilities, probably beyond the limitations of a single, fixed-configuration manipulator. To fulfill this need, researchers have been working on a Reconfigurable Modular Manipulator System (RMMS). Researchers have designed and are constructing a prototype RMMS. The prototype currently consists of two joint modules and four link modules. The joints utilize a conventional harmonic drive and torque motor actuator, with a small servo amplifier included in the assembly. A brushless resolver is used to sense the joint position and velocity. For coupling the modules together, a standard electrical connector and V-band clamps for mechanical connection are used, although more sophisticated designs are under way for future versions. The joint design yields an output torque to 50 ft-lbf at joint speeds up to 1 radian/second. The resolver and associated electronics have resolutions of 0.0001 radians, and absolute accuracies of plus or minus 0.001 radians. Manipulators configured from these prototype modules will have maximum reaches in the 0.5 to 2 meter range. The real-time RMMS controller consists of a Motorola 68020 single-board computer which will perform real time servo control and path planning of the manipulator. This single board computer communicates via shared memory with a SUN3 workstation, which serves as a software development system and robot programming environment. Researchers have designed a bus communication network to provide multiplexed communication between the joint modules and the computer controller. The bus supports identification of modules, sensing of joint states, and commands to the joint actuator. This network has sufficient bandwidth to allow servo sampling rates in excess of 500 Hz

    On coalescence time in graphs: When is coalescing as fast as meeting?

    Get PDF
    Coalescing random walks is a fundamental stochastic process, where a set of particles perform independent discrete-time random walks on an undirected graph. Whenever two or more particles meet at a given node, they merge and continue as a single random walk. The coalescence time is defined as the expected time until only one particle remains, starting from one particle at every node. Despite recent progress the coalescence time for graphs such as binary trees, d-dimensional tori, hypercubes and more generally, vertex-transitive graphs, remains unresolved. We provide a powerful toolkit that results in tight bounds for various topologies including the aforementioned ones. The meeting time is defined as the worst-case expected time required for two random walks to arrive at the same node at the same time. As a general result, we establish that for graphs whose meeting time is only marginally larger than the mixing time (a factor of log^2 n), the coalescence time of n random walks equals the meeting time up to constant factors. This upper bound is complemented by the construction of a graph family demonstrating that this result is the best possible up to constant factors. For almost-regular graphs, we bound the coalescence time by the hitting time, resolving the discrete-time variant of a conjecture by Aldous for this class of graphs. Finally, we prove that for any graph the coalescence time is bounded by O(n^3) (which is tight for the Barbell graph); surprisingly even such a basic question about the coalescing time was not answered before this work. By duality, our results give bounds on the voter model and therefore give bounds on the consensus time in arbitrary undirected graphs. We also establish a new bound on the hitting time and cover time of regular graphs, improving and tightening previous results by Broder and Karlin, as well as those by Aldous and Fill

    Linearized Motion Estimation for Articulated Planes

    Full text link

    Meticulously detailed eye region model and its application to analysis of facial images

    Full text link

    Arguments Against a Configural Processing Account of Familiar Face Recognition

    Get PDF
    Face recognition is a remarkable human ability, which underlies a great deal of people's social behavior. Individuals can recognize family members, friends, and acquaintances over a very large range of conditions, and yet the processes by which they do this remain poorly understood, despite decades of research. Although a detailed understanding remains elusive, face recognition is widely thought to rely on configural processing, specifically an analysis of spatial relations between facial features (so-called second-order configurations). In this article, we challenge this traditional view, raising four problems: (1) configural theories are underspecified; (2) large configural changes leave recognition unharmed; (3) recognition is harmed by nonconfigural changes; and (4) in separate analyses of face shape and face texture, identification tends to be dominated by texture. We review evidence from a variety of sources and suggest that failure to acknowledge the impact of familiarity on facial representations may have led to an overgeneralization of the configural account. We argue instead that second-order configural information is remarkably unimportant for familiar face recognition

    Behavioural facial animation using motion graphs and mind maps

    Get PDF

    Designing Origami-Adapted Deployable Modules for Soft Continuum Arms

    Get PDF
    © Springer Nature Switzerland AG 2019. Origami has several attractive attributes including deployability and portability which have been extensively adapted in designs of robotic devices. Drawing inspiration from foldable origami structures, this paper presents an engineering design process for fast making deployable modules of soft continuum arms. The process is illustrated with an example which adapts a modified accordion fold pattern to a lightweight deployable module. Kinematic models of the four-sided Accordion fold pattern is explored in terms of mechanism theory. Taking account of both the kinematic model and the materials selection, a 2D flat sheet model of the four-sided Accordion fold pattern is obtained for 3D printing. Following the design process, the deployable module is then fabricated by laminating 3D printed origami skeleton and flexible thermoplastic polyurethane (TPU) coated fabric. Preliminary tests of the prototype shown that the folding motion are enabled mainly by the flexible fabric between the gaps of thick panels of the origami skeleton and matches the kinematic analysis. The proposed approach has advantages of quick scaling dimensions, cost effective and fast fabricating thus allowing adaptive design according to specific demands of various tasks
    corecore